Periodic solutions of nth order delay Rayleigh equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE PERIODIC SOLUTIONS OF A CLASS OF nTH ORDER NONLINEAR DIFFERENTIAL EQUATIONS *

The nth order differential equation x + c (t )x + ƒ( t,x) = e(t),n>3 is considered. Using the Leray-Schauder principle, it is shown that under certain conditions on the functions involved, this equation possesses a periodic solution.

متن کامل

Periodic solutions of fourth-order delay differential equation

In this paper the periodic solutions of fourth order delay differential equation of the form $ddddot{x}(t)+adddot{x}(t)+f(ddot{x}(t-tau(t)))+g(dot{x}(t-tau(t)))+h({x}(t-tau(t)))=p(t)$  is investigated. Some new positive periodic criteria are given.  

متن کامل

on the periodic solutions of a class of nth order nonlinear differential equations *

the nth order differential equation x + c (t )x + ƒ( t,x) = e(t),n>3 is considered. using the leray-schauder principle, it is shown that under certain conditions on the functions involved, this equation possesses a periodic solution.

متن کامل

Oscillation and Asymptotic Behavior of Solutions of Nth Order Nonlinear Delay Differential Equations*

where n >, 2, a: [0, 00) + [0, a~), q: [0, co) --+ (-00, co), andf: (--co, 03) + (-00, CQ). We assume a(l), q(t), andf( x are continuous, q(t) < t for all t > 0, q(t) 3 co ) as t ---f co, and xf(x) > 0 for x # 0. Usually, a condition of monotonicity on f is needed in order to obtain results for Eq. (1) analogous to those of an ordinary differential equation of the same type. Many authors observ...

متن کامل

Existence of Almost Periodic Solutions to Nth-Order Neutral Differential Equations with Piecewise Constant Arguments

and Applied Analysis 3 Now one rewrites 1.1 as the following equivalent system ( x t px t − 1 )′ y1 t , 2.31 y′ 1 t y2 t , 2.32 .. .. y′ N−2 t yN−1 t , 2.3N−1 y′ N−1 t qx t f t . 2.3N 2.3 Let x t , y1 t , . . . , yN−1 t be solutions of system 2.3 on , for n ≤ t < n 1, n ∈ , using 2.3N we obtain yN−1 t yN−1 n qx n t − n ∫ t

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Polonici Mathematici

سال: 2002

ISSN: 0066-2216,1730-6272

DOI: 10.4064/ap78-3-4